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SUMMARY

Stretchable hybrid devices containing rigid sensing elements instead of stretchable sensors can acquire a
wide variety of data with high repeatability, enabling the realization of intelligent systems with machine
learning. However, integrated systems have limited applicability due to the low deformation tolerance of de-
vices that contain elements of different stiffnesses. This paper presents the fabrication of highly stretchable
hybrid devices and their integration intomachine learning to demonstrate intelligent systemswith stretchable
hybrid devices under large deformation. Both three-layer protective structures and liquidmetal paste wirings
on the stretchable hybrid device with rigid inertial sensors enable it to transmit data stably at 150% elonga-
tion. The device is integrated with a machine learning system to classify 10 types of knots, finger-written al-
phabets, and 65 words of sign language, achieving classification accuracies of 86%, 98%, and 95%, respec-
tively. These findings will help expand the applicability of stretchable electronics.

INTRODUCTION

Stretchable devices are being developed extensively by

focusing on the characteristics of following a highly flexible

and deformable living body.1 Such devices are commonly

used in wearable health monitoring,2–5 motionmeasurement,6–11

and soft robotics12,13 to acquire physical and bioelectrical

information.

Processing and interpreting data obtained from stretchable

sensors are indispensable to realize practical systems using

stretchable devices. A fully deformable device has high degrees

of freedom, making it difficult to mathematically model its shape

based on its sensor outputs. Moreover, discerning the underly-

ing meaning in the patterns of motion and bioelectrical potentials

that can be interpreted by stretchable devices is crucial, and this

cannot be accomplished via simple numerical processing.

THE BIGGER PICTURE Shape measurement of stretchable devices is more compatible with statistical pro-
cessing by machine learning than kinematic analysis. Current stretchable sensors have low stability to
repeated deformation, making collecting abundant training data difficult. Solid electronics-based sensors
with high accuracy and stability reduce the device deformability due to stiffness mismatch with the elastic
material. In this study, a rigid inertial sensor was introduced into a stretchable device using a multi-layered
protective structurewith stepwise changes in stiffness, and stablemeasurementwas realized at >150%elon-
gation. Machine learning processed the data collected with the device to recognize 10 knot shapes and clas-
sify 26 finger-written alphabets and 65 American Sign Language words. The findings open the possibility of
realizing new systems by integrating flexible materials, highly precise and multifunctional hard electronics,
and statistical processing by machine learning.
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Processing the data obtained from such stretchable devices is

highly compatible with machine learning,14,15 which can process

a large number of parameters in a nonlinear and stochastic

manner. The integration of stretchable devices and machine

learning algorithms can enable intelligent systems that afford

possibilities beyond numerical calculations, such as shape inter-

pretations of elastic bodies,16 hand motion estimation,7,11 and

speech inference using vibration and myoelectricity.16,17

Stretchable devices for integration with machine learning are

generally equipped with flexible strain or pressure sensors or

electrodes for acquiring biological potentials. However, the sta-

bility of the stretchable sensors used in these devices deterio-

rates over time due to inferior repeatability and undesired fluctu-

ations in measurements caused by deformations.18 This remains

amajor issue becausemachine learning systems require devices

that can stably acquire a large amount of data.

Hence, stretchable hybrid devices that can combine stable

data processing with sufficient deformability are attracting atten-

tion.19 Stretchable hybrid devices comprise rigid integrated cir-

cuits (ICs) mounted on a highly deformable substrate connected

to one another via stretchable interconnections. The rigid ICs

enable digital conversion of the measured data on the device

and low-noise communication.20 Furthermore, the sensor IC

based on solid-state electronics enables simultaneousmeasure-

ments of multiple parameters with high repeatability and phys-

ical quantities that cannot be measured using soft sensors.

A stretchable hybrid device with a rigid IC as the sensing

element instead of a stretchable sensor has high stability and

can collect a variety of data, making them suitable for integration

with machine learning systems. However, systems that use

stretchable hybrid devices have limited applicability when

compared with those using stretchable sensors, and measure-

ments can be performed only for small deformations, such as

pulse rate21,22 and bioelectrical potential.3,4,23–26

This limitation can be attributed to the lack of deformation

capability, preventing their use in objects that undergo large de-

formations. The difference in the elastic modulus between the

rigid element and deformable material in stretchable hybrid de-

vices causes junction rupture24,27–29 and subsequent discon-

nection of the stretchable wiring, resulting in limited overall

stretchability of the device. This has prevented the application

of machine learning systems using stretchable hybrid devices

to a wide range of objects. To expand the potential of such sys-

tems, the development of new stretchable hybrid devices with

high deformability is necessary, which can be applied to objects

with large deformations and demonstrate their integration with

machine learning systems.

In this study, we developed a system that integrates stretch-

able hybrid motion capture using rigid 6-axis inertial measure-

ment units (IMUs) and machine learning for data analysis.

Stretchable hybrid devices that canmaintain stable communica-

tion performance for 150% elongation were constructed by us-

ing heterogeneous-rigidity protection to prevent breakage be-

tween the hard-soft interface and highly deformable wiring

using liquid metal (LM) paste30; the heterophasic LM contains

monophasic LM and solid particles. The shape and trajectory

estimation of the device was achieved by analyzing acceleration

and angular velocity data acquired by the stretchable hybrid de-

vice using machine learning. Three tasks were accomplished to

demonstrate the system that integrates the stretchable hybrid

device and machine learning for highly deformable objects:

self-shape estimation of knots with large device deformation,

recognition of writing in the air (including parallel movement

components that are difficult to read with flexible sensors), and

sign-language recognition that classifies several similar motions.

Experimental results indicate that highly deformable objects can

be effectively analyzed by integrating a stretchable hybrid device

comprising a rigid IC and heterogeneous-rigidity structure with

machine learning.

RESULTS

Shape and motion recognition system with highly
stretchable hybrid device
The developed device is shown in Figure 1A. Multiple IMUs were

mounted on a substrate made of Ecoflex, a stretchable silicone

rubber. Heterogeneous-rigidity protective structures composed

of three materials with different elasticities were used to incorpo-

rate the non-stretchable circuits into the stretchable substrate

(Figure 1B). The heterogeneous-rigidity protective structure con-

tains three layers: a hard layer for protecting the electrical con-

tacts between the hard material and elastic wiring, an intermedi-

ate layer for mitigating drastic strain changes around the circuit

board, and a soft layer for ensuring high elasticity. This structure

prevented rupture between the rigid element and soft layer, even

at 150% elongation.

LM paste was used for the electrical connection between the

hard elements. Despite the high stretchability and conductivity of

monophasic Galinstan, it cannot be wired easily on a stretchable

substrate owing to its high surface tension; moreover, it breaks

easily at the hard-soft interface.20 The viscosity of the Galinstan

paste was improved by mixing it with metal powder, allowing its

direct application to flexible substrates. The paste has a lower

surface tension, preventing cohesion and wire breakage at the

material interface. The combined effect of suppressing the strain

concentration by the heterogeneous-rigidity protection and

durability of the LM paste wiring enables the realization of

stretchable hybrid devices that can operate even at 150%

elongation.

The developed device was used to collect motion data, and

machine learning was used to estimate the shape and motion

of the device. Three tasks are demonstrated: self-shape estima-

tion of knots, recognition of writing in the air, and sign-language

recognition (Figure 1C).

Incorporation of non-stretchable circuits into
stretchable substrates
The strain distribution of a one-element device with a heteroge-

neous-rigidity protective structure (Figure 2A) under tensile strain

is compared with that of the device with only a circuit board and

soft layers (Figure S1).

The structure with the elastic modulus decreasing in steps,

centered on the rigid circuit board, prevents strain concentration

around the board. This suppresses the strain gradient around the

hard substrate even at 100% elongation, preventing rupture

caused by the difference in elastic modulus. By contrast, a

Please cite this article in press as: Isano et al., Soft intelligent systems based on stretchable hybrid devices integrated with machine learning, Device
(2024), https://doi.org/10.1016/j.device.2024.100496

2 Device 2, 100496, September 20, 2024

Article
ll

OPEN ACCESS



Figure 1. Integrated system using highly stretchable hybrid device and machine learning

(A) Photographs of the developed stretchable hybrid device. Blue rectangle: magnified view of the area around the IMU. Orange rectangle: magnified view of the

area around the multiplexer. Rigid ICs mounted on flexible circuit boards placed on highly deformable substrate. Circuit boards protected by heterogeneous-

rigidity structures to improve tolerance to elongation. LM paste used to incorporate stretchable wiring to prevent disconnection on hard-soft heterojunctions.

(B) Schematic of heterogeneous-rigidity protection. Circuit board protected by 3 layers: hard layer to protect connections with stretchable wirings, intermediate

layer to mitigate strain concentration, and soft layer as a stretchable sealing layer. Highly conductive LM paste made by combining LM and micro-powder of

nickel used for stretchable wiring.

(C) Highly deformable applications realized by integration with machine learning. Artificial neural networks trained using 6-axis inertial datasets measured by

stretchable hybrid devices to demonstrate 3 types of classification—knot-shape identification, finger-writing recognition, and sign-language recognition.
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Figure 2. Characteristics of developed stretchable hybrid devices

(A) Single-element stretchable hybrid device for characterization. IMU and some passive elements mounted on a flexible substrate placed on a heterogeneous-

rigidity protective substrate. Device stretched from a relaxed state to 100% strain on LM wirings.

(B) Strain distribution analysis of single-element device using digital image correlation (DIC). Device without protection (left) showed strain concentration near the

circuit board at 30% strain, resulting in rupture at 100% strain. The device with protection (right) did not rupture at 100% strain.

(C and D) Wirings using (C) LM paste and (D) monophasic Galinstan connected to chip resistor. LM paste wirings did not disconnect at 100% strain. Blue

rectangle: magnified view.

(E) Electrical resistance of the LM paste and monophasic Galinstan wirings connected to the chip resistor. LM paste wirings show a more stable increase in

resistance with strain than monophasic Galinstan.

(legend continued on next page)
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device with only a circuit board and soft layer exhibits strain con-

centration around the substrate at 30% strain and rupture of the

substrate-soft layer adhesion at 100% strain (Figure 2B). These

comparisons indicate that the heterogeneous-rigidity protection

can mitigate the large strain gradients around the non-stretch-

able substrate and prevent deformation-induced rupture.

The elongation limit of the LM paste (Figure 2C) wiring is

comparedwith that of monophasic LM (Figure 2D). The LMpaste

was applied to a chip resistor (Figure 2C), and the wiring was

strained by 100%. The wiring remained connected with the

chip resistor, as its high viscosity caused it to spread. By

contrast, the contact between monophasic LM and the chip

resistor was easily broken due to the high surface tension of

monophasic LM (Figure 2D). The LM paste showed stable resis-

tance change up to 200% strain (Figures 2E and S2A), whereas

the monophasic LM showed a resistance change of nearly 10

times at approximately 100% strain.

The formation of a paste with high viscosity by mixing Ni pow-

der with LM has been reported.30 The increase in viscosity re-

duces the effect of the surface tension of the LM and improves

wettability to the substrate. This is considered to suppress the

self-agglomeration of the LM during elongation of the wiring,

thereby improving the breaking limit strain of the wiring. The

LM paste with less nickel powder showed a larger resistance

change because its properties are closer to those of monophasic

LMs. Based on these results, an LM paste mixed with 6% nickel

powder by mass was used for a practical device for the conve-

nience of device fabrication. The wiring of the LM paste alone,

which was not connected to the chip resistor, showed almost

no change in resistance after 100 cycles of 100% strain

(Figure S3).

The combination of LM paste wiring and heterogeneous-rigid-

ity protection can ensure a stable connection with rigid elements

even under large deformations. The resistance between the LM

paste wiring and circuit pattern on the rigid substrate was

measured. The resistance was stable within a narrow range

even after the application of 150 cycles of 100% strain

(Figures 2F and S2B). Additionally, the wiring resistance with

the heterogeneous-rigidity protection changed only approxi-

mately three times even at 250% elongation (Figures 2G and

S2C), whereas the wiring without the protection broke under

250% strain. z axis acceleration measurements were performed

while gradually applying strain to the stationary device. The de-

vice with the protective structure continued to communicate

even at 150% strain, but that without the protective layer lost

communication at approximately 110% strain. Both devices

had a constant value of gravitational acceleration, which did

not change with the strain (Figures 2H and S2D). In addition, ten-

sile strain had no effect on the measurements during the tests

conducted under constant angular velocity and acceleration us-

ing a rate table (Figure S4; Note S1; Tables S1 and S2). Thus, the

combination of a heterogeneous-rigidity protective structure, LM

paste wiring, and sensor IC capable of digital communication

can ensure stable measurements regardless of the deformation

state.

LM paste wiring remains conductive even when the interface

between the hard and soft surfaces breaks owing to the

spreading of the paste. Stable communication in this state is

difficult due to shorts in the adjacent wiring caused by the

spreading paste and differences in resistance between the wir-

ings. This is considered the reason for the much lower discon-

nection strain of the IMU than that of a single wiring.

Designs to protect the elements with two types of rigid struc-

tures have been reported,19,24,29,31 but these become ineffective

when stretching exceeds 80%. Although protective layers that

can withstand uniaxial tension of 200% or more by optimizing

the two-layer protective structure have been reported,22 the

complex structure and large protective layer make its implemen-

tation difficult in places with limited area, such as fingertips. The

application of the method of mounting only the IC on the stretch-

able material20,21 was limited to 80% elongation because the

wiring was made of monophasic LM. In our study, communica-

tion with the IC was maintained even at 150% elongation

because of the heterogeneous-rigidity protection, which pre-

vented physical damage, and LM paste, which stabilized the

electrical connection. These characteristics enabled the device

to withstand large deformations and allowed it to be mounted

on a small area such as the fingertip or a thin ribbon.

Estimation of knot shape with ribbon-like device
The incorporation of IMUs into stretchable devices using a rigid-

soft composite structure enables the acquisition of multidimen-

sional trajectory information, which cannot be achieved using

existing soft strain and bending sensors alone. The obtained tra-

jectory information can be processed by machine learning to es-

timate the shape that will be formed in a specific procedure. In

the present study, a knot-shape-prediction system based on

the motion history of both ends of a ribbon was developed as

a proof of concept for a shape-prediction system using a stretch-

able hybrid device.

The ribbon device for trajectory acquisition (Figure 3A) was

fabricated by mounting an IMU protected by heterogeneous-ri-

gidity protection on both ends of a silicone band and connecting

themwith LMpaste wiring. To swap the order of the LM intercon-

nections, the soft layer material was used as insulation for the

crossing interconnections. The stretchable substrate and hetero-

geneous-rigidity protection of the device enable it to withstand

tension and compression when a ribbon is tied together, and to

acquire stable inertial data even under large deformations.

Time series data of the acceleration and angular velocity along

each of the three axes were acquired from the two sensors when

the ribbon devices were tied (Figure S5). These knot data were

classified using a one-dimensional convolutional neural network

(1D CNN) (Figure 3B). CNN optimization was performed

(F) Resistance change between LMpaste wiring and circuit board with protective structure whenwiring was stretched 100% repeatedly; no significant increase in

resistance is observed after 150 cycles.

(G) Comparison of resistance change between LM paste wiring and circuit board under strain with and without protective structure.

(H) z axis acceleration measurements of the single-element device under strain. Device with a protective structure accurately outputs acceleration of gravity even

when the wiring is subjected to 150% strain.
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(Figures S6–S8; Table S3; Note S2) to classify the 10 types of

knots, as shown in Figure 3C. Subsequently, the model was

trained to create a classification system (Figure S9).

Data were visualized by clustering to verify the classification

ability of the trained neural network. An almost disorderly scat-

tering of the data was observed in the clustering of the input layer

data (Figure 3D). By contrast, 10 clusters of the data were formed

immediately before the output layer; however, some of the data

were mixed (Figure 3E). The important features were extracted

from the inertial data of the tying motion using the CNN.

Thevalidation resultsusing the testdataareshown inFigure3F.

The prediction accuracy is 0.87. High prediction accuracy was

achieved for all knots except for thebowandvertical knots,which

differed only in the direction of motion and were therefore misi-

dentified. Additionally, real-time classification was performed

by immediately acquiring the tying acceleration data, as shown

in Video S1. Although shape recognition using IMU has been re-

ported,32 implementationonastretchable boardhasnot yet been

achieved. Hence, deformable strain sensors33–35 were consid-

ered a more promising option for shape estimation.

Figure 3. Knot-shape classification system using stretchable hybrid device and machine learning

(A) Photograph of the knot-shape recognition device. IMUs protected by heterogeneous-rigidity protection were installed at both ends of a stretchable ribbon-like

device. The elements were connected by LM paste wirings. LM paste was applied to the 3D wiring to obtain 3D intersections of the wiring.

(B) Overview of the knot classification system flow. Inertial data extracted from 6-axis sensors when the devices were tied together were processed using a CNN

to classify the 10 different knots.

(C) Illustrations of 10 knot shapes.

(D and E) Clustering results using (D) data from the input layer and (E) data immediately before the output layer. (D) The input layer data show a scattered dis-

tribution, whereas (E) the data just before the output layer are clustered by class.

(F) Confusion matrix for classification of 10 types of knots. The classification accuracy is 87%.
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In this study, an IMU mounted on a stretchable device was

used in a self-shape-prediction system to prove the possibility

of estimating the overall shape from the local acceleration of

the device. The result can be applied to systems such as soft ro-

bots, where measuring all the moving parts is impossible, to es-

timate the shape through local measurements. Although direct

shape measurement is not possible, this problem can be solved

by applying a system that recognizes the deformation of mag-

netic polymers using microelectromechanical systemsmagnetic

sensors and machine learning.36

Finger-writing alphabet recognition by fingermovement
analysis
Stretchable devices are generally used in wearable applications

on the human body. Hand motion capture has been in high de-

mand in recent years. Stretchable hand motion capture can

recognize finger shape and motion using stretchable bending

sensors11,37,38 and electromyography,7 but these methods

have difficulty in reading parallel movements without finger

bending. In our study, IMUs were attached to the finger using a

stretchable and adherent device to read alphabets written in

the air, which cannot be read with a bending sensor alone.

A heterogeneous-rigidity device for finger-writing character

recognition is shown in Figure 4A. The inertial data of the finger

movements were read by four IMUs mounted on the index finger

and the back of the hand (Figure 4B). As shown in Figure 4C, the

inertial data were recorded by writing letters of the alphabet in

the air with the device attached (Figure S10). The range of the

finger-writing motion was automatically detected using the ac-

celeration threshold (Figure S11). The data were processed us-

ing zero padding to unify the lengths of the data. Machine

learning was conducted using the recorded data to realize

real-time finger-writing recognition of alphabetical letters

(Figure 4C).

Figure 4. Finger-writing classification system using stretchable hybrid device and machine learning

(A) Photograph of the finger-writing recognition device. IMUs protected by heterogeneous-rigidity structures are placed on a stretchable substrate shaped to fit

easily on the hand. The elements are connected by LM paste wirings.

(B) Photograph of the device attached to the hand. Four IMUs were mounted between the joints of the index finger and back of the hand.

(C) Overview of the finger-writing classification system flow. Six-axis inertial data from the IMU during writing of the alphabets in the air were used to train the

LSTM network to classify 26 letters of the alphabet.

(D and E) Results of clustering using (D) data from the input layer and (E) data immediately before the output layer. The input layer shows a scattered distribution

(D), whereas the data immediately before the output layer shows clustering by class (E).

(F) Confusion matrix in the classification of 26 alphabets. The classification accuracy is 98.1%.
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Figure 5. Sign-language recognition system using an integrated stretchable hybrid device with machine learning

(A) Photograph of the sign-language recognition device. Seven IMUs are mounted on the thumb, index finger, middle finger, and back of the right and left hands.

(B) Overview of the sign-language recognition system flow. The motions made in sign language are determined using the acceleration threshold.

(legend continued on next page)
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A neural network with a long-short-term memory (LSTM)

model was employed to classify the inertial data of the finger-

written letters. The LSTM model is suitable for learning time-se-

ries data and is therefore effective in recognizing alphabetic

characters with a fixed stroke order. The model was optimized

in terms of the number of layers, number of units, and number

of features to be used (Figures S12 and S13; Note S3,

Table S4). The optimized model was then trained to create a

classification system (Figures S14 and S15; Table S5). During

the training process of the model, sharp fluctuations were

observed in Loss and Accuracy, typical of those observed at

approximately 280 epochs. In the end, the classification accu-

racy for the training and validation data converged to approxi-

mately 98%.

Clustering was performed for the input layer (Figure 4D) and

thedata after passing through the second LSTM layer (Figure 4E).

Unlike those in knot classification, small clusters of the letter

units were formed from the input data in the case of finger-

writing. This suggests that the inertial data of finger-written

alphabetical characters with a uniform stroke order have similar

features for each character. Upon passing through the neural

network, the data exhibited more than 26 clusters. Although

some characters were divided among multiple clusters and

different characters were mixed within a cluster, the neural

network improved classification performance.

The classification accuracy was evaluated using the test data,

and a high accuracy of 98.1%was observed (Figure 4F). Further-

more, as shown in Video S2, real-time sequential recognition of

multiple characters was also achieved. The automatic detection

system of the writing conditions using the acceleration thresh-

olds enables recognition of the boundaries between the charac-

ters, thus achieving character segmentation with a small amount

of computation.

A model for processing multidimensional time-series data

based on the Vision Transformer (ViT) was also constructed,

and its performance is compared with that of LSTM (Fi-

gures S16–S19; Note S4). Based on the results, the classification

accuracy of the ViT-based model is 91.7%, slightly lower than

that of the LSTM, but the model achieved comparable perfor-

mance with one-fourth of the number of training epochs

of LSTM.

Finger character recognition using machine learning and

multiple placements of IMUs on the finger using heteroge-

neous-rigidity protection and stretchable wiring was demon-

strated. Although finger-writing recognition using only a

bending sensor has been reported,39 the findings of this study

are better than those of the previous study in terms of the

number of recognizable characters and recognition accuracy.

These results validate the usefulness of the IMU and its ability

to read parallel movements. Compared with existing finger-

writing recognition systems with a single IMU,40,41 the pro-

posed method requires numerous sensors and extensive wir-

ing, resulting in a larger device. Nevertheless, the proposed

method can recognize finger-written characters regardless of

the shape of the finger due to multiple sensors mounted on

each joint. In addition, the device can be wired from the

fingertip to the back of the hand. Therefore, high functional

expandability is expected, allowing large computational ele-

ments and batteries that do not fit on the finger to be mounted

on the back of the hand.

Further investigation is needed on the generalization perfor-

mance of the machine learning model. The sharp fluctuations

in loss that occur during training suggest that the LSTM model

may be overfitting certain training data. In contrast, such events

are not observed in the ViT-based model trained using the same

training data (Figure S19). This suggests that the phenomenon is

caused by overfitting LSTM models with some training data,

which perform complex error back-propagation calculations,

including recursion. To improve generalization performance,

future research needs to develop larger datasets for training

and validation and study models in more detail.

Recognition of American Sign Language (ASL)
Sign-language recognition systems using wearable devices

and machine learning have been developed using various

methods.7,11,42,43 A deformable device that does not interfere

with hand movements is desirable, considering user comfort.

However, soft strain sensors11,38 provide information on only

the shape of the hand, limiting the types of signs that can be

read. Integrating the heterogeneous-rigidity device developed

in this work into a sign-language recognition system enables

the system to be highly comfortable to wear and to acquire

many desirable features.

Sign-language recognition devices were equipped with

seven IMUs on the thumb, index finger, middle finger, and

back of the hand, protected by a heterogeneous-rigidity struc-

ture (Figures 1A and 5A). An I2C multiplexer was mounted on

the back of the hand to centralize communication with multiple

sensors. The motion data of the signs acquired with this device

were used for machine learning to achieve word recognition in

American Sign Language (ASL) (Figure 5B). The target vocabu-

lary was 65 words (Figure S20), containing 50 words considered

to be frequently used in a previous study42 and 15 words used as

input for Internet of Things devices.

The 1D CNN was selected as the neural network model for

sign-language recognition, and the model was optimized

(Figures S21 and S22; Note S5) to determine the shape of the

model (Figure S23; Table S6). In addition, training data were

augmented (Figure S24; Note S6) to deform the data in the tem-

poral direction to accommodate different speeds of sign-lan-

guage gestures.

Clustering was used to visualize the recognition performance

of the trained (Figure S25) model. Clustering was performed on

the input (Figure 5C) and output data of the full concatenation

layer just before the output layer (Figure 5D). The results showed

that the word-by-word patterns that were only slightly visible in

(C and D) Results of clustering using (C) data from the input layer (scattered distribution) and (D) data immediately before the output layer (clustered by class).

(E) Confusion matrix for the classification of 65 words in ASL. The classification accuracy is 95.5%.

(F) Communication with a smart assistant using the sign-language recognition system. Signs are converted into text by the recognition system and sent to the

smart assistant. The ceiling lights were controlled via the smart assistant.
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the input data were completely separated in the output data of

the full concatenation layer. Validation with the test data

showed a 95.5% correct response rate (Figure 5E). As presented

in Note S5, the recognition performance for signs made at

different speeds was slightly improved through data expansion

(Tables S7 and S8). Additionally, a word separation system

that uses acceleration thresholding (Figure S11) was utilized to

segment continuous sentences into words and convert them

into text in real time (Video S3).

As a practical example of the ASL recognition system, smart

assistant software was controlled through sign-language input

(Figure 5F). Indications to the smart assistant can be distin-

guished by treating the finger-snapping action as a wake-up in-

struction for the smart assistant. The recognized sentences were

sent to the smart assistant on the local area network, which re-

sponded and controlled the lights using an existing commercial

system (Figure S26; Video S4). Although smart assistants have

been developed by various companies, their input methods are

limited to voice or text. The integration of gesture interfaces

and smart assistants with wearable devices provides a new

communication system for both signers and speakers.

Even though the concept of a communication system with a

smart assistant using a sign-language recognition glove has

been presented, many challenges exist in its actual use. A

word segmentation system that uses acceleration thresholds

can result in false positives, where unrelated actions are recog-

nized as signs when the user is supposed to sign during

everyday activities. The problem can be solved by developing

a statistical word segmentation system that uses inertial data

from sign language and everyday movements instead of a deter-

ministic process that uses acceleration thresholds. Additionally,

sign language in motion results in different data than sign lan-

guage at rest, primarily because the inertial data from hands

are affected by themotion of the entire body. This problem could

be solved if a dataset of signs in daily activities could be used to

train the model. Thus, a large dataset of hand movements and

sign language in daily life is required to improve the system to

a level where it can be used in real life. The development of a

stand-alone system with wireless communication based on the

device proposed in this study could realize the production of

such a large dataset. In addition, a latency exists of approxi-

mately 3 s from the end of sign language to the display of the

word, as shown in Videos S3 and S4. This entails a 1-s waiting

time for word-end detection, as shown in Figure S11, 0.18 s of

preprocessing and estimation time, and 1.83 s of screen display

processing. To eliminate this delay, it would be effective to use a

more efficient training model, reduce the drawing time, and

fundamentally improve the word segmentation system.

Most sign-language recognition systems using stretchable

devices are limited to static shape detection,11,43,44 whereas

those that achieve dynamic sign-language recognition are

rigid45,46 and interfere with hand motions. The system reported

in this study solves these problems and achieves both high

hand adhesion of the device and highly accurate dynamic

sign-language recognition. Additionally, the system achieved

the same recognition performance with fewer sensors by using

multidimensional sensing with IMU when compared with the

sign-language recognition system that integrates triboelectric

nanogenerator sensors with a CNN.42 By contrast, gestured sen-

tences were not segmented through machine learning in this

study. This is a critical aspect in applying the systems to practical

uses, and an improved system should be developed in the

future.

DISCUSSION

In this study, stretchable hybrid devices with large deformation

capability were developed and integrated with machine learning

to realize three types of classification systems.With a three-layer

heterogeneous-rigidity structure and highly stretchable LM

paste wiring, the device with an IMU achieved uninterrupted

communication even at 150% strain. Devices with heteroge-

neous-rigidity structures were applied to ribbon devices,

finger-writing recognition devices, and sign-language recogni-

tion devices, where they continuously recorded motion data

even under high deformation. The acquired motion data were

classified via machine learning, and the classification accuracies

were 87%, 98%, and 96% for knot shape, finger-writing, and

sign language, respectively. These results indicate that the inte-

gration of a stretchable hybrid device comprising a rigid IC and

heterogeneous-rigidity structure with machine learning can

effectively analyze largely deformable objects. These demon-

strations indicate that the integration of stretchable devices

and machine learning systems can be effectively realized based

on devices that simultaneously realize measurement and large

deformation using highly stretchable materials and rigid ICs.

The results of this study, which integrated intrinsically stretch-

able wiring and rigid devices, can serve as a reference for imple-

menting a machine learning system for a largely deformable ob-

ject. The advantages of integrating stretchable devices and rigid

elements include signal stabilization by digital conversion near

the sensor and simultaneous mounting of different types of de-

vices by unifying the communication protocols. As an extension

of this research, an ultrasonic rangefinder can be mounted on a

sign-language device to collect the relative coordinate data be-

tween the hand and body for sign-language recognition. By

contrast, heterogeneous-rigidity-structure devices pose chal-

lenges such as reduced deformability of the entire device with

an increase in the number of mounted elements and difficulty

in establishing a mass production process line. These problems

can be solved by developing a technology to efficiently form a

minimal heterogeneous-rigidity protective layer using multi-ma-

terial 3D and other technologies. It is expected that new devices

that integrate circuit elements, such as ultrasonic transducers,

photodiodes, analog-to-digital converters, and operational am-

plifiers, which have not yet been made stretchable for practical

use, will be developed for applications where large deformations

are expected.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for resources should be directed to the corresponding author and

lead contact, Hiroki Ota (ota-hiroki-xm@ynu.ac.jp).

Materials availability

This study did not generate new unique reagents.
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Data and code availability

All original code is available in this paper’s supplemental information.

Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.

Fabrication of flexible circuit boards

The circuit pattern on the flexible substrate was fabricated using a photolitho-

graphic etching process on a copper-clad film (L71KT, total thickness

45 mm/copper layer thickness 25 mm, Arisawa Manufacturing). Upon spin

coating a photoresist (AZ 1500, Merck) on the copper-clad film, the resist

was patterned using an exposure system (M-2L, MIKASA) and a photomask.

The patterned resist was developed using a developer (NMD-3, Tokyo Ohka

Kogyo), and the unwanted copper was corroded via an etching process to

fabricate the circuit board pattern. Gold (100 nm) was then deposited on the

area of contact with the LMpastewiring to improve thewettability for the paste.

Chromium (10 nm) and gold layers (100 nm) were deposited on the back of

themultiplexer substrate to form a double-sided circuit board. For the connec-

tion between the front and back, conductive silver paste (Dotite, Fujikura Ka-

sei) was poured through holes formed on the substrate using a laser marker to

form a conductive path. Subsequently, a 6-axis IMU (MPU6500, TDK Corpo-

ration), an I2C communication multiplexer (PCA9548A, Texas Instruments),

and other passive elements were mounted on the substrate to fabricate a flex-

ible circuit board (Figure S27A; Data S1 and S2).

Preparation of LM paste

LM paste was prepared by mixing Galinstan with nickel powder (3–7 mm, Alfa

Aesar). The nickel powder was combined with Galinstan (15 g) at a constant

mass ratio and mixed at 2000 rpm for 20 min using a planetary mixer (ARE-

310, Thinky). The material was then sonicated with an ultrasonic probe

(SFX550, Branson) to 6 kJ and left overnight to stabilize the physical proper-

ties, forming a paste.

Fabrication of heterogeneous-rigidity-structure devices

Stretchable devices with a heterogeneous-rigidity structure were fabricated

according to the procedure shown in Figure S27. The soft layer was fabricated

by molding silicone rubber (Ecoflex 00-50 [A:B = 1:1 weight ratio], Smooth-on)

using a 3D-printed mold (Figure S27B(i); Data S3). The molding created a

shallow indentation at the position of the sensor substrate (Figure S27B(ii)).

A 50-mm-thick polyimide filmwas applied on the soft layer and cut using a laser

marker (MD-T1000, Keyence) to form a stencil mask (Figure S27B(iii)). LM

paste was applied over the stencil mask, and the mask was removed to fabri-

cate the patterned stretchable wiring (Figure S27B(iv)). At the intersection of

the wirings, an insulating layer was formed by dipping Ecoflex 00-50, and

the LM paste was applied again using a stencil mask to fabricate the 3D inter-

secting wirings. After the wiring was completed, the flexible substrate with the

mounted circuit elements was fixed to the soft layer using a silicone sealant

(Dowsil 734, Dow Corning), which served as an intermediate layer (Fig-

ure S27B(v)). The circuit on the flexible substrate was then electrically con-

nected to the LM paste wiring by applying LM paste from the top of the flexible

board to the wiring (Figure S27B(vi)). Epoxy resin (JER 828:JER cure 3080 =

2:1, Mitsubishi Chemical), which is a hard layer material, was dropped onto

the contact area between the LM paste wiring and flexible board and cured

at 70�C for 3 h to form a hard layer (Figure S27B(vii)). Dowsil 734 was dripped

around the flexible substrate for sealing (Figure S27B(viii)). Finally, the entire

device, including the LM paste wiring, was encapsulated by spraying Ecoflex

00-50 (A:B:hexane = 1:1:6) diluted in hexane over the entire device and vola-

tilizing the solvents.

Evaluation of single-element stretchable hybrid device

Strain distribution was analyzed through digital image correlation (DIC) anal-

ysis using random patterns. A random pattern was formed by spraying black-

body spray on the single-element device shown in Figures 2A and S1. The

patterned test devices were subjected to uniaxial strain at a rate of 1 mm/s.

The process was captured using a video camera. The video was converted

into a series of images at 1-s intervals and analyzed using DIC analysis soft-

ware (Ncorr, MATLAB).

The LMpaste wiring used for comparing the wiring characteristics was fabri-

cated through stencil mask application. Monophasic LM is difficult to pattern

with this application owing to its low viscosity. Hence, the wiring was fabri-

cated by direct patterning using a dispenser. A 0-U resistor was mounted on

both devices after drawing the wiring and fixed with an adhesive (Sili-poxy,

Smooth-on). The wiring resistance was measured using an LCR meter

(ZM2376, NF Corporation).

The sensor output values were obtained using an Arduino Uno as themaster

for I2C communication with the IMUs. Constant angular velocity and acceler-

ation were provided by a rate table (RT-02-360-S12, COSMATE).

Data collection

Knot-shape recognition

The output values of the inertial sensors on the ribbon device were acquired via

I2C communication using MPU6500, with Arduino Uno as the master, at a

sampling rate of 200 Hz (Data S4). The start and end of data recording were

determined by the experimenter. For each class, 110 datasets were obtained

with a single participant.

Finger-writing recognition

The output values of the inertial sensors on the finger-writing device were ac-

quired via I2C communication with MPU6500, with Arduino Uno as themaster,

at a sampling rate of 30 Hz. Finger-writing devices were used with an external

multiplexer circuit. The start and end of data recording were determined using

the acceleration threshold method (Figure S11), and the range from the

‘‘Beginning of gesture’’ to the ‘‘End of gesture’’ step and 40 steps before

and after the range were processed as one character (Data S5). A total of 60

data samples were obtained for each class by 2 participants, resulting in a total

of 120 datasets for each class.

Sign-language recognition

The output of the sign-language device was acquired at a sampling rate of

40 Hz via I2C communication using Arduino Uno as the master and controlled

by a multiplexer mounted on the device. Two Arduino Uno units were used to

simultaneously acquire data from the devices on the left and right hands. The

start and end of data recording were determined through the same method

used for finger-writing recognition (Data S6). Sixty datasets were acquired

for each class for a single participant.

Data preprocessing

The acquired data comprised the acceleration matrix a and angular velocity

matrix u.

a =
�
ax1;ay1;az1;/azk

�
;

am = fa1; a2/ang ðm = x1; y1; z1;/zkÞ;

u =
�
ux1;uy1;uz1;/uzk

�
;

um = fu1;u2/ung ðm = x1; y1; z1;/zkÞ;

where k indicates the number of sensors on the system, and n indicates the

number of steps in the time direction.

Knot-shape recognition

In knot recognition, k = 2. With the following equation, the acceleration a and

angular velocity u of each axis were normalized using the upper and lower

measurement limits of the sensors (amax ;umax and amin;umin, respectively).

anorm =
a

ðjamaxj+jaminjÞ=2

unorm =
u

ðjumax j+juminjÞ=2

The shape input to machine learning was set to (4,000,12), and data with

n < 4,000 were padded with 0 to account for the missing data portion. The

standardized data were then divided into 100 training data samples and 10

test data samples.
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The following augmented datasets aaug and uaug were generated by swap-

ping the positions of the two sensors and reversing the signs of the x and y

axes for the 100 training data samples:

aaug =
��ax2;�ay2;az2;� ax1;�ay1;az1

�

uaug =
��ux2;�uy2;uz2;�ux1;�uy1;uz1

�

This corresponds to flipping the orientations of the left and right sides of the

device before starting the tying motion. In addition, data were augmented by

applying white noise to both the acquired data and inverted augmented

data. Thus, 4,000 data samples (400 for each class) were used for the training.

Finger-writing recognition

Gravitational acceleration was removed from the acceleration data by using

the following high-pass filter with a = 0.8:

an = ð1 � aÞan� 1 +aan

The acceleration a and angular velocity u along each axis of the acquired

data were standardized using the mean values aave;uave and SDs sa; su with

the following equations:

astd =
a � aave

sa

ustd =
u � uave

su

The input shape for machine learning was set to (250,24) to match the

shapes of data of different lengths. The data with n < 250 were padded with

zeros. Finally, 100 data samples for each class were used for the training.

Sign-language recognition

The acquired data were divided into 40 training data samples and 20 test data

samples. Unlike finger-writing recognition, data were used for sign-language

recognition without removal of gravity acceleration.

The acceleration a and angular velocity u along each axis of the acquired

data were standardized using the mean values aave;uave and SDs sa; su with

the following equations:

astd =
a � aave

sa

ustd =
u � uave

su

The input shape for machine learning was set to (250,84) to match the

shapes of data with different lengths. The data with n < 250 were padded

with zero. The augmented data were generated from the training data by

applying white noise and deforming the data in the time direction after prepro-

cessing. Thus, 80 data samples were used for training for each class.

Optimization and training of the model

The models for the three classification tasks were examined using stratified

3-fold cross-validation. The training data were divided into three parts, two

of which were used for training and one for validation. All combinations of

the three parts of the data were trained, and the average accuracy and

macro-F1 score were calculated. The data were divided to make the propor-

tion of each class in the three partitions equal. Training was performed using

the hyperparameters of the optimized model with 10 data samples from the

training data as validation data.

Visualization of classification performance through clustering

Clustering was performed by dimensionality compression using principal-

component analysis (PCA). t-Distributed stochastic neighbor embedding

(t-SNE), which is used for the planar projection of multidimensional data,

and it was used as the visualization method.42 All data were flattened to a

1D vector and then dimensionally compressed up to 100 dimensions using

PCA. The principal components were selected for visualization in the order

of their contribution from the compressed principal components. Finally, prin-

cipal components in the range with a total contribution ofR80%were used for

visualization by t-SNE.

Controlling the smart assistant with sign-language recognition

system

A schematic of controlling the smart assistant using the sign-language recog-

nition system is shown in Figure S22. Google Assistant SDK for Python (Gi-

thub: https://github.com/googlesamples/assistant-sdk-python) was used as

the smart assistant. Google Assistant was installed on a virtual Linux machine

built on a Windows PC using Windows Subsystem for Linux 2 (WSL2) and

customized to support the text input. The motion data of the sign language

were converted into text data in real time by a machine learning-based sign-

language recognition system running on Windows, and sent to Google Assis-

tant on WSL2 using transmission control protocol/Internet protocol communi-

cation. The ceiling lights were operated by SwitchBot (SwitchBot Company)

and SwitchBot hub mini (SwitchBot Company), which are associated with

Google Assistant.

Experiments with human research participants

The research protocol was approved by the ethics committee of the Yoko-

hama National University Graduate School of Engineering Science (no.

2020-16, approved on February 12, 2021).

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

device.2024.100496.
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